3.3.75 \(\int \frac {x^5 (d^2-e^2 x^2)^p}{(d+e x)^2} \, dx\) [275]

3.3.75.1 Optimal result
3.3.75.2 Mathematica [C] (warning: unable to verify)
3.3.75.3 Rubi [A] (verified)
3.3.75.4 Maple [F]
3.3.75.5 Fricas [F]
3.3.75.6 Sympy [F]
3.3.75.7 Maxima [F]
3.3.75.8 Giac [F]
3.3.75.9 Mupad [F(-1)]

3.3.75.1 Optimal result

Integrand size = 25, antiderivative size = 179 \[ \int \frac {x^5 \left (d^2-e^2 x^2\right )^p}{(d+e x)^2} \, dx=\frac {d^6 \left (d^2-e^2 x^2\right )^{-1+p}}{e^6 (1-p)}+\frac {5 d^4 \left (d^2-e^2 x^2\right )^p}{2 e^6 p}-\frac {2 d^2 \left (d^2-e^2 x^2\right )^{1+p}}{e^6 (1+p)}+\frac {\left (d^2-e^2 x^2\right )^{2+p}}{2 e^6 (2+p)}-\frac {2 e x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},2-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right )}{7 d^3} \]

output
d^6*(-e^2*x^2+d^2)^(-1+p)/e^6/(1-p)+5/2*d^4*(-e^2*x^2+d^2)^p/e^6/p-2*d^2*( 
-e^2*x^2+d^2)^(p+1)/e^6/(p+1)+1/2*(-e^2*x^2+d^2)^(2+p)/e^6/(2+p)-2/7*e*x^7 
*(-e^2*x^2+d^2)^p*hypergeom([7/2, 2-p],[9/2],e^2*x^2/d^2)/d^3/((1-e^2*x^2/ 
d^2)^p)
 
3.3.75.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.

Time = 0.34 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.37 \[ \int \frac {x^5 \left (d^2-e^2 x^2\right )^p}{(d+e x)^2} \, dx=\frac {x^6 (d-e x)^p (d+e x)^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {AppellF1}\left (6,-p,2-p,7,\frac {e x}{d},-\frac {e x}{d}\right )}{6 d^2} \]

input
Integrate[(x^5*(d^2 - e^2*x^2)^p)/(d + e*x)^2,x]
 
output
(x^6*(d - e*x)^p*(d + e*x)^p*AppellF1[6, -p, 2 - p, 7, (e*x)/d, -((e*x)/d) 
])/(6*d^2*(1 - (e^2*x^2)/d^2)^p)
 
3.3.75.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {570, 543, 27, 279, 278, 354, 86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 \left (d^2-e^2 x^2\right )^p}{(d+e x)^2} \, dx\)

\(\Big \downarrow \) 570

\(\displaystyle \int x^5 (d-e x)^2 \left (d^2-e^2 x^2\right )^{p-2}dx\)

\(\Big \downarrow \) 543

\(\displaystyle \int -2 d e x^6 \left (d^2-e^2 x^2\right )^{p-2}dx+\int x^5 \left (d^2-e^2 x^2\right )^{p-2} \left (d^2+e^2 x^2\right )dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int x^5 \left (d^2-e^2 x^2\right )^{p-2} \left (d^2+e^2 x^2\right )dx-2 d e \int x^6 \left (d^2-e^2 x^2\right )^{p-2}dx\)

\(\Big \downarrow \) 279

\(\displaystyle \int x^5 \left (d^2-e^2 x^2\right )^{p-2} \left (d^2+e^2 x^2\right )dx-\frac {2 e \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \int x^6 \left (1-\frac {e^2 x^2}{d^2}\right )^{p-2}dx}{d^3}\)

\(\Big \downarrow \) 278

\(\displaystyle \int x^5 \left (d^2-e^2 x^2\right )^{p-2} \left (d^2+e^2 x^2\right )dx-\frac {2 e x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},2-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right )}{7 d^3}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {1}{2} \int x^4 \left (d^2-e^2 x^2\right )^{p-2} \left (d^2+e^2 x^2\right )dx^2-\frac {2 e x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},2-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right )}{7 d^3}\)

\(\Big \downarrow \) 86

\(\displaystyle \frac {1}{2} \int \left (\frac {2 d^6 \left (d^2-e^2 x^2\right )^{p-2}}{e^4}-\frac {5 d^4 \left (d^2-e^2 x^2\right )^{p-1}}{e^4}+\frac {4 d^2 \left (d^2-e^2 x^2\right )^p}{e^4}-\frac {\left (d^2-e^2 x^2\right )^{p+1}}{e^4}\right )dx^2-\frac {2 e x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},2-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right )}{7 d^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \left (-\frac {4 d^2 \left (d^2-e^2 x^2\right )^{p+1}}{e^6 (p+1)}+\frac {\left (d^2-e^2 x^2\right )^{p+2}}{e^6 (p+2)}+\frac {2 d^6 \left (d^2-e^2 x^2\right )^{p-1}}{e^6 (1-p)}+\frac {5 d^4 \left (d^2-e^2 x^2\right )^p}{e^6 p}\right )-\frac {2 e x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},2-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right )}{7 d^3}\)

input
Int[(x^5*(d^2 - e^2*x^2)^p)/(d + e*x)^2,x]
 
output
((2*d^6*(d^2 - e^2*x^2)^(-1 + p))/(e^6*(1 - p)) + (5*d^4*(d^2 - e^2*x^2)^p 
)/(e^6*p) - (4*d^2*(d^2 - e^2*x^2)^(1 + p))/(e^6*(1 + p)) + (d^2 - e^2*x^2 
)^(2 + p)/(e^6*(2 + p)))/2 - (2*e*x^7*(d^2 - e^2*x^2)^p*Hypergeometric2F1[ 
7/2, 2 - p, 9/2, (e^2*x^2)/d^2])/(7*d^3*(1 - (e^2*x^2)/d^2)^p)
 

3.3.75.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 279
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntP 
art[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(c*x)^m* 
(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && 
!(ILtQ[p, 0] || GtQ[a, 0])
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 543
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> Module[{k}, Int[x^m*Sum[Binomial[n, 2*k]*c^(n - 2*k)*d^(2*k)*x^(2*k), 
 {k, 0, n/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Binomial[n, 2*k + 1]*c^ 
(n - 2*k - 1)*d^(2*k + 1)*x^(2*k), {k, 0, (n - 1)/2}]*(a + b*x^2)^p, x]] /; 
 FreeQ[{a, b, c, d, p}, x] && IGtQ[n, 1] && IntegerQ[m] &&  !IntegerQ[2*p] 
&&  !(EqQ[m, 1] && EqQ[b*c^2 + a*d^2, 0])
 

rule 570
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> Simp[c^(2*n)/a^n   Int[(e*x)^m*((a + b*x^2)^(n + p)/(c - d*x)^ 
n), x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*c^2 + a*d^2, 0] && I 
LtQ[n, -1] &&  !(IGtQ[m, 0] && ILtQ[m + n, 0] &&  !GtQ[p, 1])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.3.75.4 Maple [F]

\[\int \frac {x^{5} \left (-e^{2} x^{2}+d^{2}\right )^{p}}{\left (e x +d \right )^{2}}d x\]

input
int(x^5*(-e^2*x^2+d^2)^p/(e*x+d)^2,x)
 
output
int(x^5*(-e^2*x^2+d^2)^p/(e*x+d)^2,x)
 
3.3.75.5 Fricas [F]

\[ \int \frac {x^5 \left (d^2-e^2 x^2\right )^p}{(d+e x)^2} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{5}}{{\left (e x + d\right )}^{2}} \,d x } \]

input
integrate(x^5*(-e^2*x^2+d^2)^p/(e*x+d)^2,x, algorithm="fricas")
 
output
integral((-e^2*x^2 + d^2)^p*x^5/(e^2*x^2 + 2*d*e*x + d^2), x)
 
3.3.75.6 Sympy [F]

\[ \int \frac {x^5 \left (d^2-e^2 x^2\right )^p}{(d+e x)^2} \, dx=\int \frac {x^{5} \left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{p}}{\left (d + e x\right )^{2}}\, dx \]

input
integrate(x**5*(-e**2*x**2+d**2)**p/(e*x+d)**2,x)
 
output
Integral(x**5*(-(-d + e*x)*(d + e*x))**p/(d + e*x)**2, x)
 
3.3.75.7 Maxima [F]

\[ \int \frac {x^5 \left (d^2-e^2 x^2\right )^p}{(d+e x)^2} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{5}}{{\left (e x + d\right )}^{2}} \,d x } \]

input
integrate(x^5*(-e^2*x^2+d^2)^p/(e*x+d)^2,x, algorithm="maxima")
 
output
integrate((-e^2*x^2 + d^2)^p*x^5/(e*x + d)^2, x)
 
3.3.75.8 Giac [F]

\[ \int \frac {x^5 \left (d^2-e^2 x^2\right )^p}{(d+e x)^2} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{5}}{{\left (e x + d\right )}^{2}} \,d x } \]

input
integrate(x^5*(-e^2*x^2+d^2)^p/(e*x+d)^2,x, algorithm="giac")
 
output
integrate((-e^2*x^2 + d^2)^p*x^5/(e*x + d)^2, x)
 
3.3.75.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (d^2-e^2 x^2\right )^p}{(d+e x)^2} \, dx=\int \frac {x^5\,{\left (d^2-e^2\,x^2\right )}^p}{{\left (d+e\,x\right )}^2} \,d x \]

input
int((x^5*(d^2 - e^2*x^2)^p)/(d + e*x)^2,x)
 
output
int((x^5*(d^2 - e^2*x^2)^p)/(d + e*x)^2, x)